- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Deierling, W. (2)
-
Marshall, R. (2)
-
Antunes de Sá, A. (1)
-
Antunes de Sá, A. (1)
-
Sousa, A. (1)
-
Viets, A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lightning Geolocation and Flash Rates From LF Radio Observations During the RELAMPAGO Field CampaignAbstract The lightning data products generated by the low‐frequency (LF) radio lightning locating system (LLS) deployed during the Remote sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observation (RELAMPAGO) field campaign in Argentina provide a valuable data set to research the lightning evolution and characteristics of convective storms that produce high‐impact weather. LF LLS data sets offer a practical range for mesoscale studies, allowing for the observation of lightning characteristics of storms such as mesoscale convective systems or large convective lines that travel longer distances which are not necessarily staying in range of regional VHF‐based lightning detection systems throughout their lifetime. LF LLSs also provide different information than optical space‐borne lightning detectors. Lightning measurements exclusive to LF systems include discharge peak current, lightning polarity, and lightning type classification based on the lightning‐emitted radio waveform. Furthermore, these measurements can provide additional information on flash rates (e.g., positive cloud‐to‐ground flash rate) or narrow bipolar events which may often be associated with dynamically intense convection. In this article, the geolocation and data processing of the LF data set collected during RELAMPAGO is fully described and its performance characterized, with location accuracy better than 10 km. The detection efficiency (DE) of the data set is compared to that of the Geostationary Lightning Mapper, and spatiotemporal DE losses in the LF data set are discussed. Storm case studies on November 10, 2018, highlight the strengths of the data set, which include robust flash clustering and insightful flash rate and peak current measures, while illustrating how its limitations, including DE losses, can be managed.more » « less
-
Antunes de Sá, A.; Marshall, R.; Sousa, A.; Viets, A.; Deierling, W. (, Earth and Space Science)Abstract The atmospheric electric field is an important research parameter in understanding storm electrification and energy exchange between lightning and the atmosphere across the globe. The near‐surface electric field can range from a few V/m (order of 10–100 V/m), mainly produced by the currents in the global electric circuit and local charge perturbations, to tens of kV/m in the presence of electrified clouds. The electric field mill (EFM), a variable capacitance electrometer, has been the instrument of choice in the atmospheric electricity community studying phenomena associated with the atmospheric electric field. The EFM is particularly useful in following storm movement and evolution, monitoring the fair‐weather electric field at distant locations, and measuring the vertical electric field inside clouds with EFM deployments on balloons. In this paper, we describe a new electric field mill ground‐based design, which focuses on lowering the manufacturing and operational costs of doing research with an array of EFM instruments while maintaining the scientific capabilities offered by past designs and commercially available devices. The theory of operation, data processing, and calibration of the instrument are also described. Example data from the first generation of these new field mills, deployed in the RELAMPAGO campaign in Argentina, are presented here. The RELAMPAGO deployment and data set illustrate important strengths of this design, for example, cost, autonomy, longevity, and measurement quality.more » « less
An official website of the United States government
